Monitoring home temperatures for older people’s health

Dr Janet Rudge
Low Energy Architecture Research Unit (LEARN),
London Metropolitan University
Outline

Why monitor home temperatures for older people?

Case study to evaluate central heating installation for older, low-income households

Identifying criteria and obstacles for monitoring temperatures in relation to older people’s health
A vulnerable group

Older people are:

• vulnerable to health effects of cold living conditions
• often unable to afford sufficient heating
• most likely to live in hard-to-heat housing

Excess winter deaths:

• high numbers among over 65 year-olds in UK
• associated with low indoor temperatures and
• poor thermal efficiency of housing

Housing and Health: Challenges for UK Science and Policy

Janet Rudge, LEARN
Related policies / instruments

Income supplements: Winter Fuel / Cold Weather payments

Health inequalities - relate to cold housing & lack of affordable warmth

Buildings:
- Building Regulations Part L (energy efficiency)
- Housing Health & Safety Rating System
- Decent Homes Standard
- Fuel Poverty Strategy (Warm Front grants)

Evidence needed for
- scale of cold homes problem
- ‘what works’
Healthy temperatures?

Benchmark indoor temperatures to avoid health risk:

- 18°- 24°C - no risk to healthy, sedentary people
- 18°C - minimum for comfort
- <16°C - increased respiratory risk
- <12°C - cardiovascular risk

Fluctuating temperatures cause cold stress

- exacerbate circulatory disease (eg from warm- cold rooms)
- rapid change stressful for respiratory conditions (eg at bedtime)

‘Satisfactory’ heating standard

- 21 °C living rooms, 18 °C elsewhere
- 23 °C in living rooms + 18 °C for older / infirm households (Scotland)

Bathrooms: 22 °C recommended
Central heating evaluation

Hunt & Gidman (1978) found:

- CH homes 3°C warmer than non-CH homes
- between-room temperature range in high-income homes < half that in low-income homes
- coldest rooms in high-income homes same as warmest rooms in low-income homes

Central heating ownership:

- linked with declining excess winter deaths
- associated with higher indoor temperatures but......
- may not have benefited most vulnerable groups
- ownership no guarantee of use or affordability

How can health effects be measured?
Case study methods

Opportunistic sample:
- free central heating offered to Lambeth tenants aged 70+ (N=1181)
- response rate 64% - 45% agreed to research; final sample N = 210

Multi-disciplinary approach:
- external /room temperatures monitored hourly over 3 months (LEARN)
- interviews on quality of life and heating behaviour (King’s College)

Monitoring heating use and domestic temperature:
- cheap miniature dataloggers allowed continuous monitoring in several rooms

Data compared here for sample of 102 tenants, 70+ years old:
- with and without central heating
- monitored over same 3-day cold period (external average 7.1°C)
Before CH installation:

Heating perceptions

- felt the cold
- worried about heating costs
- reported more chronic illness / conditions affected by cold (e.g., arthritis)

Rooms heated

- Living room
- Kitchen
- Bedroom
- Bathroom

Among those who initially accepted CH offer, more

- felt the cold
- worried about heating costs
- reported more chronic illness / conditions affected by cold (e.g., arthritis)
Temperature profiles

Indoor temperatures analysed against thresholds for health:

Typical home with CH

Typical home without CH

Average *whole house* temperatures similar, before and after installation

Housing and Health: Challenges for UK Science and Policy
Janet Rudge, LEARN
Effects of central heating

For CH homes data showed:

- mean whole house temps only slightly warmer (<0.5°C)
- mean living room temps slightly lower
- similar proportion of ‘warm’ living rooms during day
- similar proportion (but slightly fewer) of ‘cold’ bedrooms at night, but
- between-room contrasts smaller
- fewer ‘cold’ bathrooms
- smaller effect of cold weather on living - bedroom temperature difference
What is a ‘warm’ home?

Proposed definition

<table>
<thead>
<tr>
<th>Mean whole house temperature</th>
<th>Mean between-room temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>warm</td>
<td>warm, consistent</td>
</tr>
<tr>
<td>≥19°C</td>
<td>≥16.5<19°C</td>
</tr>
<tr>
<td>intermediate</td>
<td>intermediate, consistent</td>
</tr>
<tr>
<td><16.5°C</td>
<td><3°C</td>
</tr>
<tr>
<td>cold</td>
<td>cold, consistent</td>
</tr>
<tr>
<td><3°C</td>
<td>≥3°C</td>
</tr>
<tr>
<td>variable</td>
<td></td>
</tr>
</tbody>
</table>

Comparative warmth of homes over cold period by CH status

<table>
<thead>
<tr>
<th>Central heating status</th>
<th>Warmth of homes - percentage</th>
<th>Total: %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>warm, consistent</td>
<td>warm, variable</td>
</tr>
<tr>
<td>No CH</td>
<td>12</td>
<td>35</td>
</tr>
<tr>
<td>CH</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>27</td>
</tr>
</tbody>
</table>

- by whole house mean temp, 47% “warm” homes in both groups, but
- between-room temp range significantly lower in homes with CH
Criteria for health

Actual experience:
- which rooms occupied and when
- range of temperatures rather than ‘whole house mean’

Vulnerable situations:
- bathroom temperatures should be warmer than others
- getting out of bed at night

Vulnerable times of day:
- rapid temperature change - at bedtime
- early morning (blood pressure changes)
Health assessment problems

Study design
- health effects of housing interventions prone to confounding
- necessary flexibility of methodology precluded RCT
- sample size, time scale

Responses
- impaired temperature perception can affect comfort responses
- self-reporting requires recalling health service use
- psychosocial factors may influence answers

Relating temperature to outcomes
- chronically ill may run warmer homes
- health service provision depends on availability rather than need
Uptake of interventions

Reasons for refusing CH installation

- upheaval
- reduced space
- prefer cooler temperatures / CH causes stuffiness
- CH is unhealthy - especially for respiratory conditions
- higher fuel bills / rent rise implications
- like look of real gas fire
- illness
- ‘too old to change now’ / fear of new system
- do those most in need refuse?
Further influences

Physical factors
• monitoring of occupation periods
• wide variation of building characteristics

Behavioural factors
• influence of expectations on responses / heating behaviour
• open windows, unheated bedrooms
• intermittent heating, thermostat as on/off switch
• levels of clothing
• difficulties using / understanding controls
• perception that ‘too warm’ homes are unhealthy
Conclusions

Central heating may benefit health
• *improved absolute temperatures* and *reduced thermal stress*

Advantages of continuous monitoring
• *highlights wide variation in domestic temperatures*
• *insights into links between indoor temperature and health*

New comparative measures required
• *to characterise thermal experience in relation to health*

Importance of energy efficient buildings
• *because of behavioural issues / resistance to change*

Need more housing / health research
Acknowledgements

Study described in paper for *Indoor Air* 2002:

Central heating installation for older, low-income households: what difference does it make?
Janet Rudge, LEARN, London Metropolitan University
Rachel Winder, Dept General Practice & Primary Care, King’s College London

based on:

Lambeth study: Heating and Well-being in Older People

funded by

Dunhill Medical Trust and the Special Trustees of Lambeth Southwark and Lewisham Health Authority